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Thin slender water jets 
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Department of Applied Mathematics, University of Adelaide, S. Australia 5001 

(Received 23 June 1981 and in revised form 19 October 1981) 

An analysis is provided for the free development of slender, jets of water, in which the 
cross-sections are of small thickness-to-width ratio. 

1. Introduction 
If a jet of water emerges a t  sufficient speed from a nozzle, the flow-velocity vector 

will be directed almost along the jet, and its cross-section will change only slowly. 
Such jets, e.g. from garden hoses, are readily observable, and have been described by 
many authors, e.g. Rayleigh (1945, p. 355). The problem of theoretical determination 
of the shape of the cross-section of the jet is not, however, an easy one and only 
recently have such analyses been performed. 

Taylor (1960) and Longuet-Higgins (1972) neglected gravity and discussed the case 
when the sections are initially (and remain) elliptical. Tuck (1976) incorporated gravity 
into the elliptic-section case; remarkably, elliptic sections can remain elliptic, even 
when perturbed laterally by gravity. Geer & Strikwerda (1980) carried out direct 
numerical computations on jets of general section. Substantial and progressively 
increasing distortion occurs for non-elliptic initial cross-sections. 

In  the present paper, we analyse a special limiting case in which analytic pre- 
dictions of this distortion are possible, namely that in which individual cross-sections 
have a small thickness-to-width ratio. For simplicity, we neglect gravity, and hence 
may assume that the main jet is straight, lying close to the x-axis, and thinner in the 
z-direction than the y-direction. 

The results determine the evolution of the jet in terms of two functions F(y) and 
V(y), the former being such that z = P(y) is the shape of the jet a t  an initial section 
x = 0, while the latter function V(y) measures the (lateral) component of fluid velocity 
a t  that initial section. Procedures are outlined for determining F(y) and V(y) from the 
geometrical properties of the nozzle. 

The most important determinant of the jet’s cross-section is the lateral velocity 
V(y). If V(y) is zero or constant in value, the jet retains its original shape for ever, in 
the absence of gravity. If V(y) varies linearly with y, the jet, expands or contracts in a 
self-similar manner. If it  is contracting, it must reach a point of zero width a t  some 
subsequent value of x. The present approximate theory predicts a singularity a t  this x, 
where the thickness becomes infinite. However, comparison with the exact theory for 
elliptical jets that have linear V(y) indicates that this singularity simply models a 
rapid switch of the major and minor axes of the jet cross-section. 

For general V(y), singularities may develop a t  sections x of non-zero width, and 
examples for a quadratic function V(y) are shown here, with singularities either a t  the 
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edge or a t  the centre plane of symmetry. These correspond to the jet suddenly 
‘sprouting’ side sheets, as is known to happen in some cases. 

2. Derivation of equations for free jet 
The water is assumed to be inviscid and incompressible, and to be moving steadily 

and irrotationally. Its velocity potential $(x, y, x )  therefore satisfies Laplace’s equation 

(2.1) 

= +f (x,y), (yI < W). (2.2) 

$xx + $4Jy + 922 = 0 

in the region of flow. That region is supposed to have boundaries 

That is, the jet has width 2b(x), measured in the y-direction, and thickness 2f (x, y) in 
the z-direction. We concentrate on the boundary z = + f, invoking symmetry with 
respect to the plane z = 0. 

The kinematic boundary condition is 

$2 = f , 9 x + f y $ y  On z =f, (2.3) 

and, in the absence of gravity and surface tension, constancy of pressure a t  the jet 
boundary implies constancy of velocity magnitude, i.e. 

#:+@+@= U 2  on x = f ,  (2.4) 

for some constant U .  The most general free-jet problem is to solve (2.1), subject to 
(2.3) and (2.4) on the unknown surface z = f. 

The slender-jet assumption is that the flow is predominantly in the x-direction. In  
the absence of gravity or compressibility, that dominant flow velocity must be 
independent of x and of magnitude U ,  and hence we may write 

4 = UX+@, (2.5) 

for some small perturbation potential @. The equation satisfied by @ is then 

subject to 

2u@,+@;+@; = 0 (2.8) 

on x = f. That is, as in aerodynamic slender-body theory (Thwaites 1960) the cross- 
flow potential @ satisfies the two-dimensional Laplace equation in planes x = const. 
The boundary x = f of this cross-section is still unknown, and is determined by the 
coupled nonlinear boundary conditions (2.7), (2.8). 

The system (2.6)-(2.8) is solvable by numerical means, given any initial con- 
figuration f (0, y), @ ( O ,  y, 2 ) .  Some such solutions, with gravity also included, were 
developed by Geer & Strikwerda (1980). 

A further simplification is obtained if the jet is not only slender, but also thin, 
namely i f f <  6. Then @ can be replaced by its Taylor series about z = 0, namely 

(2.9) @(x, y, 2 )  = @(x, y, 0) - &WD,,(x, y, 0) + . . .. 
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Now the boundary conditions (2.7), (2.8) reduce respectively to 

Vfx+ cf@&l = 07 

2U@,,+ 0; = 0, 

(2.10) 

(2.11) 

with Q, written for Q,(x, y, 0). It is convenient to introduce the lateral velocity component 

v(x, y) = @,@, y, O ) ,  

in terms of which (2.10) gives 

V f x +  ( f @ ,  = 0, (2.12) 

and (2.11) gives, upon differentiation with respect to y, 

uv,+vv, = 0. (2.13) 

Equations (2.12), (2.13) are the fundamental equations for a thin slender jet. 
Equation (2.13) determines the velocity v(x, y), and may be thought of as an approxi- 
mation to the Euler equation of hydrodynamics, for conservation of y-wise momentum, 
in the absence of pressure gradient. Once v is determined, the continuity equation 
(2.12) determines the cross-section shape f(x,y).  Equations (2.12), (2.13) take an 
especially familiar appearance if we note that the co-ordinate x plays only a time-like 
role, and introduce a pseudo-time co-ordinate t = x/U. However, we shall retain the 
original x-co-ordinate here. 

3. Solution for free jets 
The first-order partial differential equations (2.12), (2.13) can be solved completely 

by the method of characteristics (cf. Ames 1965, p. 51). We need merely quote the final 
result, expressed in implicit form, namely 

v(x,y) = V Y ) ,  (3.1) 

where 

(3.3) 
vx y = y - -  
U ’  

Although the functions V (  Y ) ,  F(  Y )  occurring in (3.1), (3.2) are in general arbitrary, 
they can be interpreted as ‘initial’ values of v and f respectively, since it follows that 

W , Y )  = VY), (3.4) 

f ( O , y )  = F(Y). (3.5) 

That is, (3.1)-(3.3) enable complete determination of the shape and lateral velocity of 
the jet for all x > 0, given initial values of these quantities at  2 = 0. 

In  particular, if v(0,y) 3 0, then V = 0, and hence v(z,y) E 0 for all x > 0. Also 
f(x, y) = f ( 0 ,  y) for all 2 > 0. That is, if at  the initial section x = 0 there is no lateral 
velocity component, then no such component ever develops, and the jet retains the 
original cross-section for ever. Our interest is therefore mainly with initial configur- 
ations that possess a non-zero lateral flow v. 

13-2 
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The simples such possibility (aside from v = const. which is of no interest) is a 
linear expressit in, i.e. 

V(Y) = kY, (3.6) 

for some constt n t  k. Now the implicit equation (3.1) subject to (3.3) can be solved to 
give the explici b result 

from which folk ws 

That is, in this case, the jet retains its initial cross-section shape, but is stretched by 
the factor 1 + kx/U in the y-direction, and correspondingly shrunk by the inverse of 
this same factor in the x-direction. The combined effect of these two stretchings con- 
serves mass, as required. The factor 1 + kx/U exceeds unity if k > 0, i.e. if a t  the 
initial cross-section the fluid is expanding, and in such cases the jet continues to 
expand laterally, while becoming ever thinner. Conversely, if k < 0, the jet contracts 
laterally and grows in thickness. Eventually, this growth in thickness must invalidate 
the basic thin-jet assumption, and does so prior to the collapse of the edges onto each 
other a t  x = - U/k. 

The above example applies irrespective of the initial cross-section shape F( y), 
providing the initial velocity V is linear in y. It is in principle possible to design a 
nozzle of a suitable converging or diverging character to achieve this result for any 
F(y). However, a particular case of interest is an elliptical shape, i.e. 

F(y) = co( 1 - yZ/b;)% (3.9) 

If the ellipse (3.9) is attained by smooth variation of the form 

f ( X , Y )  = c ( 4  (1 -Y2/b(42)+ (3.10) 

for x < 0, with co = c(O-), b, = b(O-), i.e. in a slender nozzle whose every section is an 
ellipse of semi-axes (b(x), c(x)), then the lateral velocity is indeed linear in y, and has 

U k = -b’(O-). 
b0 

(3.11) 

Thus, as might be expected, the jet expands or contracts according to whether or not 
the nozzle from which it emerges is expanding or contracting, and is dependent on the 
sign of b‘(0-). In  fact, these results are simply the limit as co/b,  -+ 0 of the exact results 
of Taylor (1960) for elliptical jets. 

If, in general, we write the lateral edge of the jet as y = b(x), x > 0, then this must be 
a continuation, via the implicit relationships (3.1)-(3.3), of the edge y = b, of the 
initial cross-section. That is, suppose that F(y) is a function that vanishes only a t  
y = k b,. Then y = b(x) where P ( Y )  = 0, i.e. 

(3.12) 
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That is, the jet edge is always a straight line, expanding or contracting linearly with 
distance from the nozzle according to the sign of the lateral velocity component a t  the 
edge of that nozzle. Even for non-elliptic sections it may be shown that 

V(b0) = Ub‘(O-), (3.13) 

where b’(O-) is the longitudinal slope of the lateral edge of the nozzle a t  its mouth. 
That is, the jet plan form is y = & b(x ) ,  where 

b ( x )  = bo+xb’(O-). (3.14) 

The factor 1 + xV‘( Y ) /  U in the denominator of (3.2) is an amplification factor for the 
lateral extent of the jet, and its inverse is a thickness growth factor, in the general case. 
However, because of the implicit involvement of v, the jet does not simply stretch 
itself without distortion, unless Vis a linear function as in (3.6). Nevertheless, a general 
conclusion can be reached in cases where V’(y) takes significant negative values. That 
is, in such cases, for sufficiently large x ,  the factor in the denominator of (3.2) may 
vanish, and hence a singularity develops in the jet-thickness distribution. 

This singularity is mathematically equivalent to that for a shock wave in gas- 
dynamics (cf. Shapiro 1953, chap. 8) or a hydraulic jump in hydraulics (cf. Streeter 
1961, chap. 3) .  Indeed there is a close connection between the governing equations 
(2.12), (2.13) and equations describing one-dimensional flows in these fields. However, 
the physical interpretation of the singularity is not necessarily that of a shock in the 
present application. 

For example, we have already seen in the special case of a linear velocity profile (3.6) 
that this singularity appears exactly at the value of x where the jet’s width has reduced 
to zero. That is, all that is happening in this case is that the jet is switching over from 
its initial thin sheet form, parallel to the y-axis, to a corresponding thin sheet parallel 
to the z-axis. In  fact, it is known (Taylor 1960) that an elliptic free jet must always go 
through such a transition, and the ‘shock’ a t  x = - U / k  is no more than an indication 
of that transition taking place. 

4. Quadratic lateral velocity profiles 

quadratic profile 
Further insight into the behaviour of thin jets is obtained by use of the simple 

V(Y) = kY+rlY2 (Y > O ) ,  (4.1) 

which generalizes the linear profile (3.6). For any 7 f 0, the jet cross-section must 
distort, and our interest is in the nature of this distortion, and, in particular, in the 
development of singularities. 

In  fact, because a scaling can always be performed of the type x -+ kx, V + k-lV, 
without changing the problem, we can confine our attention to three one-parameter 
families: (i) k = 0; (ii) k = 1; (iii) k = - 1.  That is, an overall doubling of the lateral 
velocity a t  the initial cross-section simply contracts the jet in the x-direction, and the 
distortion occurs twice as fast. For definiteness, we also normalize the jet’s initial half- 
width to unity, writing b, = 1,  and hence confining attention to 0 < Y < 1, and set 
u =  1. 
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FIGURE 1. Evolution of a free jet from a rectangular aperture at 
which the lateral velocity distribution is V(y) = y2. 
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FIGURE 2. As figure 1, with V(y) = -y2. 
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FrCuRE 3. As figure 1 ,  with V(y) = y-0.25~~. 
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FIGURE 4. As figure 1, with V(y) = y-0.75~~. 
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FIGURE 5. As figure 1, with V(y) = y -  1 . 5 ~ ~ .  
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FIUURE 6. As figure 1, with V(y) = - y +  2y2. 
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FIGURE 7. As figure 1, with V(y) = -y+O.5y*. 
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FIGURE 8. As figure 1, with V(y) = -y-0.5y2. 



388 M .  S. Borgas and E .  0. Tuck 

A primary quantity of interest is the section x = 5% a t  which, for the first time, the 
denominator of (3.2) changes sign from positive to negative. Clearly the thin-jet 
assumption has broken down a t  (in practice just before) this section xs. Such a singu- 
lapity can never occur if V'( Y )  > 0. That is, if the jet is initially expanding everywhere, 
it continues to do so in a perfectly stable manner, and becomes ever thinner and wider 
as x increases. This is true in family (i) if 7 > 0 and family (ii) if 7 > - 8, and hence 
we have no further interest in these cases. 

Since the expression in the denominator of (3.3) is a linear function of Y ,  its minimum 
value in 0 Q Y < 1 necessarily occurs either at Y = 0 or Y = 1. That is, the singularity 
first arises either in the middle or a t  the edge of the jet. In  fact the parameter 7 deter- 
mines this question, the singularity occurring a t  the edge if 7 < 0 and a t  the centre if 

For the family (i) with 7 < 0, the singularity must occur first a t  the edge Y = 1, 
'I > 0. 

i.e. we have 

and the corresponding half-width of the jet is 

y s  = * 
for all 7. That is, this family always contracts to exactly half its original width, a t  which 
point it develops a singularity a t  the edge. 

Family (ii) is only of interest if 7 < - +, and the singularity again always occurs first 
a t  the edge Y = 1, a t  the section 

1 xs = -- 
27+ 1'  

with the jet having a half-width 

7 Ys =-. 

It is of interest to note that,, for - 1 c 7 < - +, the jet is expanding laterally. Cases with 
'I < - 1, on the other hand, are like family (i) in that the jet is always contracting 
laterally; in fact, as 7 -+ - co, this family must coincide with family (i). 

Family (iii) can give a singularity both for 7 > 0 and 7 < 0. I n  fact it  is never stable, 
for any 7. If 'I < 0, the initial velocity is everywhere inward as for family (i), the 
jet converges laterally, and the singularity first develops a t  the edge, a t  

1 
xs = - 

1-27, 
where the half-width is 

ys=- -  7 
1 - 27' 

If 7 > 0, the singularity first develops at the centre t = 0, and hence must occur a t  
the same section xs = 1 for all 7. The half-width a t  this point is ys = 7. Note that this 
jet is contracting if 0 < < 1, and expanding if 7 > 1. 
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The linear-profile results discussed in 0 3 are recovered from this family (iii) as 7 -+ 0. 
In  particular, ys --f 0 as 7 3 0. That is, only for 7 = 0 does the singularity correspond 
to a direct change between a sheet that is then with respect to z and one that is thin 
with respect to y; in all other cases the new jet has a t  least two ‘planes of thinness’. 

Figures 1-8 show samples of the cross-sections that develop from an initially 
rectangular jet in which the lateral velocity profile is quadratic. That is 

F ( Y )  = E = const. (0 < Y < 1). 

For definiteness, E is shown as 0.2, although this thickness scale is of course quite 
arbitrary. The family (i) cases of figures 1 and 2 are the stable case 7 = I and the case 
7 = - 1 where the edge singularity occurs at  x = 0.5. 

Similarly, figures 3-5 are for family (ii), and include respectively a stable case 
= - 0.25, an expanding case 7 = - 0.75 with an edge singularity a t  x = 2, and a 

contracting case 7 = - 1.5 with an edge singularity a t  x = 0.5. Finally, figures 6-8 
are for family (iii), and include respectively an expanding case 7 = 2 with a centre 
singularity at  x = 1, a contracting case 7 = 0.5 also with centre singularity at x = 1, 
and a contracting case 7 = - 0.5 with an edge singularity at  x = 0.5. 

5. Thin slender nozzles 
The free jets discussed above must have been produced by a nozzle of some kind, 

and the parameters F (  Y ) ,  V (  Y )  at the initial section x = 0 are determined by matching 
with such a nozzle. A particular case of interest is that when, like the jet itself, the 
nozzle is both slender and thin. That is, the jet can be considered as a continuation 
into x > 0 of a similarly bounded flow in x < 0. 

Thus, equations describing the flow in the nozzle region x < 0 can be obtained by a 
similar derivation to that in 3 2. Clearly the constant-pressure boundary condition (2.4) 
no longer applies, and hence we delete the resulting momentum equation (2.13). The 
flow is described by one equation only, a continuity equation like (2.12); fortunately 
there is now only one unknown function v(x, y), since the nozzle geometry prescribes 
the thickness functionf(x, y). 

However, the continuity equation is not necessarily identical to (2.12), since, in the 
absence of the constant-pressure condition (2.4), there is no reason to retain the 
assumption that the dominant x-wise velocity component U is independent of x. That 
is, if the nozzle is contracting or expanding (in cross-sectional area) the mean flow may 
(indeed must) vary along the jet, with U = U(x). 

The corresponding corrections to the derivation in $ 2  lead in a straightforward 
manner to a modified continuity equation, namely 

(Uf), + (fv), = 0, (5.1) 

which reduces to (2.12) if U is constant. Although (5.1) appears to have introduced 
another unknown U(x), integration of (5.1) with respect to y across the section 
x = const. provides the Venturi law 

U(x)S(x) = const., 
where 
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is the nozzle’s cross-section area. For a general nozzle shape, prescribed by a given 
function f(x, y), we can determine the lateral velocity profile v(x, y) simply by inte- 
grating (5.1), having computed U ( x )  by (5.2). 

An interesting class of nozzles is the self-similar family 

(5 .4 )  

where Q = Q ( t )  ( -  1 < t < 1) is a given function. That is, this nozzle’s sections are all 
of the same shape, but stretched in an arbitrary manner, by b(x )  in the y-direction and 
independently by c(x) in the z-direction. We see immediately that 

4%) = S,b (x )c (x ) ,  (5.5) 

where 

and hence 

if U = U, when b = b,, c = c,. Now (5.1) states that 

(Qv), = U,b,c 

which integrates to give 

(5.7) 

That is, in all members of this self-similar family, the lateral-velocity profile in the 
nozzle is everywhere proportional to y. Hence, in particular, the profile at  the aperture 
x = 0 is linear in y, and (3.6) holds, with (3.11) determining the constant k.This family 
includes that of elliptic sections discussed in $ 3, and also all rectangular-sectioned 
nozzles, and many other important cases. The results of 9 3 show then that, in all such 
families, if k < 0, the jet develops a ‘singularity’ at  its centre y = 0, a t  a point x = xs 
where the jet width b(x,) has reduced to zero. All such jets are simply 6 t c h i n g  over 
suddenly, from thin in the y-direction, to thin in the z-direction. 

The quadratic velocity profiles discussed in $4 can be achieved in many types of 
thin slender nozzles. For example, suppose the nozzle has a trapezoidal shape for y > 0, 
i.e. f(x, y) is a general linear function of y, of the form 

If ,u = 0, the section is a rectangle of dimensions b(x) by c(x) .  Now, for general ,u(x), 
the cross-section area is 

S(X)  = 4c(b+4pb2) ,  (5.10) 

and hence the fluid velocity is 

Thus (5.1) states that 
(UC)’ + (UC,u)’Y+ (f4, = 0, 

which integrates to give 

v(x,  y) = -- 
C 

(5.11) 

(5.12) 
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The profile (5.12) is parabolic at  any rectangular section x, where p = 0. If we take 
,u = 0 a t  the aperture x = 0,  and evaluate the derivatives a t  that point, we find that, 
as in (4.1), 

where 
V(Y) = v(0, Y) = kY + w2, 

T T  

7 = -$!Jop;. 

(5.13) 

(5.14) 

Thus any departure ( q  =+ 0) from a linear profile demands that p; = p’(0) =+ 0, i.e. that 
the sections immediately ahead of the rectangular aperture be non-rectangular. 
Equation (5.13) is a direct modification of the equation (3.11) that holds for linear 
profiles. 

A similar analysis can be performed for many classes of slender nozzle geometry. 
Thin slender jets can also be created by non-slender nozzles. For example, we could 
create a sudden contraction forming a thin aperture a t  the exit from an otherwise- 
circular hose-pipe. In  such a case there will be a matching region where the flow 
direction is not necessarily nearly parallel to the x-direction, before the free thin 
slender jet is established. Further work is needed to determine the functions F ( y )  and 
V(y) for such a free jet, from the geometrical properties of the aperture. 
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